dirac structures
نویسندگان
چکیده
in this paper we introduce the concept of dirac structures on (hermitian) modules and vectorbundles and deduce some of their properties. among other things we prove that there is a one to onecorrespondence between the set of all dirac structures on a (hermitian) module and the group of allautomorphisms of the module. this correspondence enables us to represent dirac structures on (hermitian)modules and on vector bundles in a very suitable form and define induced dirac structures in a natural way.
منابع مشابه
Dirac structures for generalized
We establish some fundamental relations between Dirac subbundles L for the generalized Courant algebroid (A⊕A, φ+W ) over a differentiable manifold M and the associated Dirac subbubndles L̃ for the corresponding Courant algebroid Ã⊕ Ã over M × IR.
متن کاملE1(M )-Dirac structures and Jacobi structures
Using E1(M)-Dirac structures, a notion introduced by A. Wade, we obtain conditions under which a submanifold of a Jacobi manifold has an induced Jacobi structure, generalizing the result obtained by Courant for Dirac structures and submanifolds of a Poisson manifold.
متن کاملQuasi-Poisson structures as Dirac structures
We show that quasi-Poisson structures can be identified with Dirac structures in suitable Courant algebroids. This provides a geometric way to construct Lie algebroids associated with quasi-Poisson spaces.
متن کاملIntegration of Coupling Dirac Structures
Coupling Dirac structures are Dirac structures defined on the total space of a fibration, generalizing hamiltonian fibrations from symplectic geometry, where one replaces the symplectic structure on the fibers by a Poisson structure. We study the associated Poisson gauge theory, in order to describe the presymplectic groupoid integrating coupling Dirac structures. We find the obstructions to in...
متن کاملIntegration of Dirac-Jacobi structures
We study precontact groupoids whose infinitesimal counterparts are Dirac-Jacobi structures. These geometric objects generalize contact groupoids. We also explain the relationship between precontact groupoids and homogeneous presymplectic groupoids. Finally, we present some examples of precontact groupoids.
متن کاملInterconnection of Dirac Structures and Lagrange-Dirac Dynamical Systems
In the paper, we develop an idea of interconnection of Dirac structures and their associated LagrangeDirac dynamical systems. First, we briefly review the LagrangeDirac dynamical systems (namely, implicit Lagrangian systems) associated to induced Dirac structures. Second, we describe an idea of interconnection of Dirac structures; namely, we show how two distinct Lagrange-Dirac systems can be i...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of science and technology (sciences)ISSN 1028-6276
دوره 32
شماره 1 2008
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023